
Entity Recognition for Sensor Network Motes
(Extended Abstract)

Stefan Lucks1, Erik Zenner2, André Weimerskirch3, Dirk Westhoff4

1 Theoretische Informatik, University of Mannheim, Germany
2 Erik Zenner, Cryptico A/S, Copenhagen, Danmark
3 escrypt - Embedded Security GmbH, Bochum, Germany
4 NEC Heidelberg, Germany

Abstract: Message authenticity (knowing “who sent this message”) is an important
security issue for sensor networks, and often difficult to solve. Sometimes, it may be
sufficient and more efficient to solve the simplerentitiy recognitionproblem, instead:
“is the message from the same entity that sent the previous messages?”. This paper
describes entity recognition for sensor network motes. A protocol presented at SAC
2003 [5] is shown to be insecure, and a new and provably secure protocol is proposed.

1 Introduction

Consider the following story: Two strangers, Alice and Bob, meet at a party and make a
bet. Days later, after it had turned out that Alice is the winner, Bob receives a message:
“Bob, please transfer the prize to bank account [. . .] Thank you. Alice.”. How does Bob
know that this message actually has been sent from that person, who had called herself
“Alice” at that party? In other words, how does Bob recognise a message from Alice?

In this paper, Alice and Bob are sensor network motes. Using digital signatures would be
computationally expensive for them. We present a low-cost solution based on secret-key
cryptography (cryptographic hashing and message authentication). We neither assume the
existence of a trusted third party, nor the availability of pre-deployed secret or authentic
information, the network topology can be dynamic, and there may be no (securely) syn-
chronised time. Sensor networks typically have most or even all of these properties.

Scenario Description In short, we assume Eve, the adversary, to havefull control over
the connection between Alice and Bob. We consider this to be reasonably pessimistic:
Over-estimating the adversary is not as bad as under-estimating her capabilities. Thus,
Eve can

◦ read all messages sent from Alice or from Bob,
◦ modify messages, delay them or send them multiple times to either party,
◦ and send messages generated by herself to Alice or Bob or both.

We have to make one exception, though. Without some faithfully relayed initial messages,
the entire notion of “recognition protocols” would not make sense. Thus, we assume an
initial phase (typically with one message from Alice to Bob, and a second message from
Bob to Alice), where Eve reads the messages, but she relays them faithfully.

Driven by reasonable pessimism as before, we assume that Eve aims for anexistential
forgeryin achosen messagescenario: She can choose messagesxi for Alice to authenticate
and send (“commit”), and she succeeds if Bob accepts any messagex′ 6= xi as authentic.

More formally, we write commit-message(xi,i) if Alice authenticates and sends the messa-
gexi in time-framei. In practice,xi will be a value from outside the scope of the protocol,
e.g., a sensor measurement. It should be anticipated that Eve has some influence onxi, and
in theory, we assume that Eve can choosexi. We write accept-message(xi, i), if Bob be-
lieves the messagexi to be authentic and fresh in time-framei.1 Eve wins if she somehow
can make Alice to commit-message(xi,i) and Bob to accept-message(x′, i).

Since Eve has full control over the connection between Alice and Bob, the reliability of
the connection depends on her2. Thus,denial of serviceattacks are trivial for Eve. We
point out, however, that our solution issound(i.e., if Eve works like a passive wire, the
protocol works as intended) and supportsrecoverability: if, after some suppressed or mo-
dified messages, Eve again begins to honestly transmit all messages, like a passive wire,
the soundness with respect to new messages is regained.

Security Parameters and Cryptographic Base Operations Let c and s be security
parameters. We considers to be the size of a symmetric key andc to be the output size of
a message authentication code. In a typical application scenario, we would requires ≥ 80
andc ≥ 30. The two building blocks in this paper are a cryptographic hash functionh
(which we actually use as a one-way functionh : {0, 1}s → {0, 1}s), and a message
authentication code (in short: a “MAC”)m : {0, 1}s ×{0, 1}∗ → {0, 1}c. Hash functions
and MACs are rather cheap to implement and evaluate. We writex ∈R {0, 1}s for the
uniformly distributed random choice of a hash input. Finally,n is a predefined constant
(the maximal number of messages to authenticate).

2 Attacking a Proposed Solution

In [5] an entity recognition protocol is proposed, and a proof of security is presented.
Unfortunately, the proof is flawed, and an attack against that protocol can be given.3

At first, Alice chooses a random valuea0 and generates a hash chaina1 := h(a0), . . . ,
an := h(an−1). Similarly, Bob choosesb0 and generatesb1 := h(b0), . . . ,bn := h(bn−1).

1Our notion of freshness implies some (small) time frame for eachxi, which is known to Bob. The message
xi is “fresh” in framei, if Alice had actually committed toxi within framei. During a time frame, Alice only
commits to one single message, and Bob accepts (at most) one such message.

2In practice, there can also be non-hostile reasons for a connection to become unreliable.
3The proof in [5] implicitly assumes either party to notice when the other party rejects a message. In commu-

nication scenarios relevant for entity recognition, this is hardly realistic.

The initial phase consists of two messages: Alice→ Bob: an, Bob→ Alice: bn. After
the initial phase, Alice’s internal state can be described by the triple (bn, n, 1), and Bob’s
by (an, n, 1). During protocol execution, we write(bi, j, u) for Alice’s internal state and
(aj , i, v) for Bob’s4. Authenticating a text x goes like this:

1. Alice→ Bob:m(aj−u−1, x), aj−1.
2. Bob verifiesh(aj−1) = aj .
3. Fork := 1 to k′ := max{u, v} do

a) Bob→ Alice: bi−k.
b) Alice verifiesh(bi−k) = bi−k+1.
c) Alice→ Bob:aj−k−1.
d) Bob verifiesh(aj−k−1) = aj−k.
e) If any verification fails or the loop is interrupted,

then (Alice and Bob abort) Alice’s new internal state is (bi, j, max{u, k + 1}).
Bob’s new internal state is (aj , i, max{v, k + 1}).

Else (both continue). Alice’s new internal state is (bi−k′ , j − k′ − 1, 1).
Bob’s new internal state is (aj−k′ , i− k′ − 1, 1).

Let Alice’s internal state be(bi, j, 1) and Bob’s(aj , i, 1). Theattack works as follows:

1. Alice→ Bob:m(aj−2, x), aj−1.
2. Bob verifiesh(aj−1) = aj . (OK!)
3. Fork := 1 to 1 do

a) Bob→ Alice: bi−1.
b) Alice verifiesh(bi−1) = bi. (OK!)
c) Alice→ Bob:aj−2. Manipulation: Eve changesaj−2 to a′ 6= aj−2.
d) Bob verifiesh(a′) = aj−2. (Check fails!)

Thus, Alice sendsaj−2 in Step 3.c, but Bob receivesa′ 6= aj−2. Since Alice’s check is
OK, her internal state becomes (bi−1, j − 2, 1). On the other hand, Bob’s check fails, thus
his new internal state is (ai, j, 2). Now assume the next messagex′ to authenticate:

1’. Alice → Bob:m(aj−4, x
′), aj−3.

2’. Bob verifiesh(aj−3) = aj . (Check fails!)

At first glance, this is a denial of service attack: Eve modifies a single message, and the
protocol stalls, because it lacks ofrecoverability5. But Eve can evenforgeany messagex′′:
To acceptx′′, Bob needs to seeaj−1, aj−2, andaj−3, verifyingh(aj−1) = aj , h(aj−2) =
aj−1, andh(aj−3) = aj−2. In step 1’, Alice sendsaj−3 to Bob.Eve, having seenaj−3,
can impersonate Alice and convince Bob to accept anyx′′ of Eve’s choice.

4The first value is the currently verified “endpoint” of the other party’s hash chain, the second points into the
own hash chain, and the third counts the number of necessary repetitions.

5In fact, any random corruption ofaj−2 is likely to break the service.

3 A Description of our Protocol

In this section, we describe a new protocol to solve the entity recognition problem without
using public-key cryptography. For initialisation, Alice chooses a random valuea0 and
generates a hash chaina1 := h(a0), . . . , an := h(an−1). Similarly, Bob choosesb0

and generatesb1 := h(b0), . . . , bn := h(bn−1). When running the protocol, both Alice
and Bob learn some valuesbi resp.ai from the other’s hash chain. If Alice acceptsbi as
authentic, we write accept-key(bi). Similarly for Bob and accept-key(ai).

Theinitial phase consists of two messages: Alice→ Bob:an, Bob→ Alice: bn. Thus, we
have accept-key(an) and accept-key(bn).

After that, we split the protocol inton epochs. The epochs are denoted byn − 1, . . . , 0
(in that order). Each epoch allows Alice to send a single authenticated message, and Bob
to receive and verify it. The internal state of each Alice and Bob consists of an epoch
counteri, the most recent value from the other’s hash chain (accept-key(bi+1) for Alice
and accept-key(ai+1) for Bob), and a one-bit flag to select between program states A0 and
A1 for Alice resp. B0 and B1 for Bob. Also, both Alice and Bob store the roota0 resp.b0

of their own hash chain.6 This value doesn’t change during the execution of the protocol.

After the initial phase, and before the first epochn − 1, Alice’s state isi = n − 1,
accept-key(bn), and A0, and Bob’s isi = n − 1, accept-key(an), and B0.One epochi
can be described as follows:

A0 (Alice’s initial state)Wait for xi (from the outside), then continue:
commit-message(xi,i); computedi = m(ai, xi) (usingai as the key to authenticatexi);
send(di, xi); gotoA1.

A1 Wait for a messageb′ (supposedly from Bob), then continue:
if h(b′) = bi+1 then bi := b′; accept-key(bi); sendai; seti := i− 1; gotoA0;
else gotoA1.

B0 (Bob’s initial state)Wait for a message(di, xi), then continue: sendbi andgotoB1.
B1 Wait for a messagea′ (supposedly from Alice), then continue:

if h(a′) = ai+1

then ai := a′; accept-key(ai);
if m(a′, xi) = di then accept-message(xi, i); (authentic in epochi)
seti := i− 1; gotoB0;

else gotoB1.

If, in state B1, Bob is senta′ with h(a′) = ai+1 butm(a′, xi) 6= di, Bob will seti := i−1;
and go to state B0. Accordingly, no message will be accepted as “authentic in that epoch”.

One epoch consists of two messages from Alice to Bob and one from Bob to Alice, see Fig.
1. The protocol issound: If all messages are faithfully relayed, Alice commits toxi in the
beginning of epochi and Bob acceptsxi at the end of the same epoch. Also, the protocol
canrecover from message corruption: Repeating old messages can’t harm security, Eve
may know them, anyway. We thus allow Alice to re-sendai+1 and(xi, di), if she is in

6Storinga0 andb0 is sufficient to derive all other hash values, but for improved performance, Alice and Bob
can implement a time-storage trade-off [2].

d := m(a , x)iii

if m(a , x) = d i i i
then accept−message (x , i)i

else wait for new a i

a i

BobAlice
ii

commit−message

ib

x , d
i(x , i)

if h(b)=b
then accept−key

i i+1

else wait for new
i(b)
ib if ih(a)=a i+1

then accept−key (a)i

x i

Abbildung 1: Simplified description of one epoch of the protocol

state A1 and has been waiting too long for the valuebi from Bob. Similarly, if Bob is in
state B1 and has been waiting too long forai, Bob sends the valuebi again.

4 Final Comments

As we demonstrated by theattack in Section 2, designing secure entity recognition pro-
tocols is tricky and error-prone. Thus, it is desirable to prove the security of a proposed
protocol. Further, we argue that authentication and recognition protocols for sensor net-
works must be rather efficient to run on extremely low-cost devices and to save energy
resources [6]. Our protocol (a) is extremely efficient, (b) does not need a trusted third
party or a key pre-distribution scheme, and (c) is provably secure. In the full paper [4],
we formally prove the security of our protocol, assuming the security of the primitive
operationsh andm.

Literatur

[1] P. Buondonna, J. Hill, D. Culler. “Active Message Communication for Tiny Networked Sen-
sors”.

[2] D. Coppersmith and M. Jakobsson. “Almost Optimal Hash Sequence Traversal”. Financial
Cryptography 2002.

[3] A. Hodjat, I. Verbauwhede. “The Energy Cost of Secrets in Ad-hoc Networks (Short Paper)”.
(2002).citeseer.ist.psu.edu/hodjat02energy.html

[4] S. Lucks, E. Zenner, A. Weimerskirch, D. Westhoff, “Is this a Message from Alice?” Submit-
ted.

[5] A. Weimerskirch, D. Westhoff. “Zero Common-Knowledge Authentication for Pervasive Net-
works”. SAC 2003.

[6] A. Weimerskirch, D. Westhoff, S. Lucks, E. Zenner, “Efficient Pairwise Authentication Proto-
cols for Sensor Networks: Theory and Performance Analysis”. Jennifer Carruth, Thomas F. La
Porta (eds),“Sensor Network Operations”. IEEE Press Monograph, 2004.

